Parallel Viterbi Estimation & Gradient Ascent

Final Project for CS378 — Parallel 'Scientzﬁc Compuimg'

Mark Kedzierski
- Senior of Computer Science -
University of Texas at Austin

Abstract ‘

. Polyphonic music transcription
can be solved effectively by stating it as
a problem of Maxinuim a fPosteriQri
state trajectory estimation (Viterbi') -
over a Switching Kalman Filter Model
(Cemgil 2003 ). Unfortunately, exgct
Viterbi calculation is generally
intractable over SKFM § because of the
exponential increase in number of
mixture components which are required
10 accurately represent g Posterior
density at each fime-step. This is due to
the requirement of keeping track of every
possible combination of switch variables
across all time steps; we gain a mixture
component for every possible vahie of
the switch variable, at-each time step. -
Though pruning the propagated message
does greatly increase performance; the
calculations are stif] time-con&umz’ng _
due to the large transition matrices we
multiply in the standard Kalman
Filtering equations. Gl

o Fortunately, the large cross- .

products can-be computed much faster
by parallel computers. I present fwo
parallel implementations of polyphonic
music transcription and compare their
performance. The resultant Jour
algorithms presented here can be
applied more generally as Virerpi
Estimation and Gradz‘enr—Ascent aka
Hill-Climbing. - - . .

inference, see ( Murphy)

' For a complete sourée on Viterbi and Bayesian _

mark@mark-kedzie com

Introduction 1

In this réport I will compare two
parallel algorithms for solving the
problem of polyphonic music
transcription based on Bayesian
inference. Specifically, transcribing a
digital recording of a single guitar
player. The applications of this

~ capability include music education,
composition, and recording, Specifically

Lam focusing on the recording of a
single guitar playing a polyphonic -
melody: First, we define a state space
model based on {Cemgil, 2004) for -
generating audio signals not unlike those
of stringed instruments. We then use our
generative model to infer the most likely
piano roll, i.e. a musicaj score, which
would generate the audio waveform. The
piano roll describes the musical -
performance which caused the digital
audio data. This is done by generating

~ waveforms for every possible piano.ro]l

and comparing them to the source. The
closest waveform would give us the
correct piano roll; In practice, (because
we can't realistically make all those :
'calculations), we do this in real-time as.a
Viterbi MAP state trajectory estimation
problem using Switching Kalman F ilters
(Murphy, 2002). This means we
bropagate the most likely sequence of
states which led to the current audio
sample. ' o

But even with estimation
algorithms, the computations are still
intractable, as they grow exponentially at

e i g,



each time-step. In order for them to be
useful, we need to take advantage of -
parallel processors.

Generative Model

The generation of a digitally
sampled damped sinusoidal of frequency
w can be stated as a linear dynamical
system given by (Cemgil, 2003). We
assume that our observations of the
system are digital samples taken at a
constant rate Fs.

Observations - Y11

At each time slice the
observation represents a single audio
sample. The value of y; represents the
amplitude of the wave at time t. It has
only a single component.

State Vectdr - 847

- “The waves can be generated by a
two-dimensional oscillator vector, sy,
which rotates around the origin with an
angular frequency w. The length of
vector, |sy, corresponds to the initial
amplitude of the sinusoidal and
decreases over time at rate constant p.
This is called the damping coefficient.
Because the variables w and p stay
constant for a given model they are
called parameters.

The observations are generated
by projecting the 2-dimensional state
vectors onto a 1-dimensional plane (over
time). This is depicted in the figure
below (Cemgil, 2003).

A damped oscillator in state space form. Left: At each time
step the state vector, s, , rotates by e and its length becomes
shorter. Right: The actual wavefornt is a one dimensional
projection from the two dimenstonal state vector.

Figure 1

Initial state estimate - x

'The initial state estimate,
7 = p(sp), is drawn from a zero-mean
Gaussian with covariance matrix S.
x ~ N(O,S)

" The diagonal sum of S, Tx(S), is
proportional to the initial amplitude of
sound wave. The covariance structure
defines how the 'energy' is distributed
along the harmonics (Cemgil, 2003). Itis
initially estimated with a strong 1st and
2nd harmonics. The later overtones
have increasingly less energy. This
pattern can be shown by a Fourier
transform of the audio signal.

B lemmm |

| ]
i jgl”lil[\'lipfl"ilﬂeu“(ﬁ m\mHﬁ'ré.’#ﬂr%ﬂ%‘r’#&%%' ]

x L L .
0 200 400 800 800 1000 1200

|

2

1

U;T T T (. .T.

Top: Audio signal of electric bass. Originally at 22 kHz,
down-sampled by factor D=20. Middle: Frequency '
Spectrum (DFT) of audio signal - Bottont: Diagonal entries
of 8 for H==7 corvespond to overtons amplitudes.

Figure 2

Transition Matrix - A

The transition matrix, A, is
responsible for rotating the state vector
around the origin by w and decreasing
it's length by p (i.e. projecting se—=si.1)-
This is defined with Given's rotation
matrix, B(w), which rotates a two
dimensional vector by w radians: -

(DCOS fw] -pSin [w] )

B={ sin [w]  pCos [w]

Observation Matrix - C
The observations are simply
projections of the state vector. We



define the observation matrix as 1x2H
dimensional projection matrix:

C=[0 1..0 1]

Polyphonic Transcription

Polyphonic Music Transcription
is a combination of Viterbi MAP
trajectory estimation and 1terat1ve
gradient ascent performed in windows.-
Viterbi estimation is used to track note
onsets in each window, while the
gradient ascent algorithm calculates the
most likely chord which seunds for the
entire window. We present both
algorithms as well as paraliel '
implementations. .

Viterbi Estimation
Given an audio ‘waveform, our

goal is to infer the most likely sequence

of piano roll mdlcators r1.1, which could
give rise to the observed audio samples.
This is, in general, a Viterbi estimation
problem. The value we are seeking is
defined as the Maximum A Posteriori
trajectory:.

iy = argnaxp(r” IJ’U)
. rIT

It represents the most likely
sequence of hidden variables to cause an
observed output. . This is different from
the posterior distribution because itis
Just a point estimate. Calculation is the
same as for filtering, except for
replacing the summation over I with
the maximization (MAP). It is important
to note that, in Viterbi estimation, we
propagate a Jiltering potential, 6,1, as
opposed to a filtering density, a;.5. The
term potential used to indicate that this
value is not normahized. This is .
sufficient because we only care about the
best plano roll (i.e. conﬁguratlon Tetr)

with highest Ilkehhood) We can save
caleulations by using a point estimate. ;

Priri vir) f p(y;.—;lsr,_n;f) POL i) piay)

Inference is more difficult in the
switching state-space model because we-
have to keep track of every possible
enumeration of ry.p and return the =
sequence with the highest likelihood.
The representation of the filtering
potential is a Mixture of Gaussians -
(MoG) with a single component for each
enumeration of ry.r.(we use =1 to -
simplify the examples): - . -
50 = e _ o, D a1, 2)

e = PVits 85 Fes ¥y1) —.{ a2 1) 642 2) }

where each,

5:1:(1; = P18 ¥ = L =J)
o sp(ylfta St: = 1',']".{;]. :,])

is also a MoG.

. Ateach time step we make
separate estimates for every _
configuration of piano roll 1nd10ators
{refe1}. This corresponds to the -
predlctlon Step. It can also be
considered an expand step. As shown by
the left side of the next ﬁgure

Kalman Filter Equations

To propagate our posterior state
estimate across time slices we. use the
Kalman Filter? equations.

P ;c =A4P 1. AT + Q

=4 SE—1 _ '
Kk =P CYHYC P CT + B!
=t +Kn-Cx)
Pr=(-KC P~ _

At each time iteration, we
compute 10 cross products for each

‘Fora. great introduction to Kalman Flltenng,
refer to (Welch, 2001)




piano roll configuration for each mixture
component. We discuss parallelization
in a later section.

Polyphonic Chord
Transcription - Gradient
Ascent

In this section we use the Viterbi
estimation technigues learned in the last
section use them to transcribe
polyphonic chords. The number of notes
in the model is represented by M. The
difference in this case is that we infer the
variables ry, rather than rinv 1. We
assume that the configuration stays
constant for the entire window, t=0:T.

The algorithm, given in (Cemgil,
2003), is a simple greedy search. We
start with at an initial estimate of the
chord configuration (zero's or drawn
from prior), and uniform prior p(ri:m). A
more informative prior can be very
helpful in finding the correct
configuration, riv. We then calculate
the likelihood of our state estimate, &,
and all nelghbormg configurations
differing from our by a single note. 1fé
is the most likely, we stop (at the local
maximum). Otherwise we continue until
convergence. '

The following section shows
some of my results from chord
transcription experiments. The best
chord configuration at each iteration is
represented equally as a Boolean array
of length M*. A listing of actual note
names which make up the chord (chord
tones) are included after the Boolean
array. Asterisks indicate a correct
estimate. The system parameters used
are listed as well.

3 Neighboring configurations are those which
differ by one note. (Cemgil)

* M represents the number of notes in our system
model

12 notes, 1 Harmonic, 4096 Hz, 400 samples

Actuaj chord configuration
122122212222

chord tones

fA, C,E]

-Log Likelihood

Chord Config
=0 222222222222 -156933.7858
=1 222212222222 -18761.5701
i=2 222212212222 -6361.4038
i=3 122212212222 -332.5287
i=4 122112212222 273.0216
i=5 122122212222 2877244 %*

{Kedzierski, 2003}
Figure 3

Because the algorithm does stop
at a local maximum, it can get stuck
before finding the real maximal
likelihood. It is best to run the algorithm
several times from different initial chord
configurations’ drawn from the pnor and
take the best result.® -

To run the gradient algorithm we
need to calculate M filtering potentials
over the entire span of the window.

Note that because we are dealing with
potentials, as opposed to densities, we do
not need to filter all chord *
configurations. We just calculate a
point estimate of the likelihood in the
posterior state distribution.

This can be accomplished using
the Kalman Filtering Equations but
requires 10 matrix multiplications for
each note on each time-slice. Realistic

* Initial chord configurations are drawn from a
prior distribution over chords. Prior defined in
(Kedzierski, 2005)

S Best result refers the the chord with the highest
Iikelihood.



window size would be 400 samples7,
which results in 4,000 matrix
multiplications for each note in the
model at each time slice. realistic model
would have approximately 50 notes.
Parallelization could greatly benefit the
performance of the algorithm by
speeding up the matrix multiplications.

Parallel Implementations

Next we implement and
benchmark two different parallel
implementations of the Viterbi and
Gradient algorithms.

Parallel Implementation | -
Cannon Matrix Multiplication

- The first method uses the same
filtering algorithms as above but
calculates each Matrix cross-product on
2HM processors using Cannon’s :
algorithm. This effectively reduces the
time of the calculation to a single dot
product, _ _
Here the source code for a serial
matrix multiply: ' '

int row = my rank/N;
int col my_ rankN;

for(i=0;i<N;i++) f{
//Dividing the work
local x[i] ‘alrow] [i];
local yli] | blil[col];)
int localkdot =
Serialkdot(local_x, local_y, N} ;

for(itO;i<rows;i++)
for(jzo;j<b—>cols;j++) {
ficat sum = 0;
for{k=0;k< cols; kt++)
sum += datali][k]*
b->datalk][4];
c->datalil[i] = sum; 1

It is apparent from the loop structure that
we need to calculate 2*H*M dot
products and combine them. which
takes n® dot products of dimension N.
We use the Cannon algorithm to lower
that to just a single dot product on 2HM
processors. In the code for cannons
algorithm we assign each index in the
resultant state vector/matrix to a single
processor.

7 From 8,000Hz signal downsampled by a factor
of 2

The result matrix is the same size
as in the inputs (2HMx2HM). The
processors are synchronized before
calculating each cross product when the
host sends each of them their assigned
vectors using MPI_Send. The root
processor then performs its share of
work and waits to receive confirmation
from each of the processes indicating
they have completed their calculations.
Once they are all returned the root
combines the data.

This method has the trade-off of
frequent synchronization too li ghtning
fast matrix multiplication. Tt can be
further sped up by more processors by
splitting up the dot products. However,
My intuition says that the frequent
synchronizations should slow execution
of the parallel algorithm, )

The first method applies in the
same way to both Viterbi and Gradient
algorithms so there is no need to
distinguish between them when
discussing it. However, when exploring
the next parallelization we will consider
each algorithm separately.

Parallel Implementation | -
Viterbi MAP Estimation

In the second method we use a
more creative way of separating the
workload among the processors. We
assign each processor to a single
transition matrix and send it a message,
This results in having two processors
performing calculations for each note in




the model. One pecforms the note-on
transition function, the other the mute
transition function to each. The cross
products are performed in serial.

In order to do this effectively we
have to divide all the components
depending on the combination of
sound/mute states for the last 2 time
slices. This is accomplished by storing
the mixture of Gaussians message in the
following structure of the transition
function:

fir oo oo s o - M
o oo e
N RN 'DI : :
, e 50 For B e e Ml
fralma D=l e o g fi‘ “}iz - ZIU
R S T = S S =
4 o~ o o o =
oo 8 [ O & . f2

Structure of polyphonic iransition function

- Figure 4

The mairix is organized into 4 regions
which represent the poscﬂble
combinations of the last two time slices.
The individual components will move
from region to region when they change
states. On a note onset the component is
initialized to reglon (1,2). When they

continue iinging they remain in the (1,1)

region. When the note is released, it
moves to regwn 2,1, The reglon 2 2 is
for silent notes.

The component, (1,2) is different
because it represents a note onset. It's
important to note that the piano roll
configuration before the onset, r1:onset ,
doesn't effect the likelihood of future

indicators after it. This enables us to we

can replace messages from xt-1 mute
with the maximum (scalar) likelihood
estimate among them. We introduce this
scalar value, 7;.; mute, as a prior for the
next onset-and tag the message with 1.
1*. This replacement enables the

algorithm to-be tractable by alowing -

pruning of the (2,2) region without
losing accuracy. We can then actually

put a flat limit on the nurber of’
components to the number of processors
available. To be effective, we need
about a 100 processors.

The processors are forced,
however, to synchronize after each time
step to compare the likelihoods for each
the possible chord configurations, so
pruning can be performed at the end of
each iteration. “This could be modified
so that the sync is only done afler several
time-steps. The trade-off This is done
on the first ‘master' processor by waiting
for messages from all the processes
using MP1 Recv. Fach process sends a
N length vector which the host process
appends. to. form the new matrix. and

‘then the new state vector is distributed

among the processors using MP1_Bcast.
the synchrorﬁza*ien is again-done by the
host process receiving messages from ail
the Processes.

Paraliel lmp!ementatmn -
Grad:eni Ascent Estimation

When we per form gradient
ascent we need to filter a single chord
configuration for each note in the model.
This means that we do M passes in each
iteration. I propose splitting the work
among M processors and have each
processor compute one configuration.
The processors have to be synchronized
al each iteration of the algorithm to

' 1dem:1fy the hlghest log likelihood®.

B We use the Iég likelihood to avoid common
underflow 1ssucs



Figure adapted from {Cemgil, 2003), shows M copies of the
generative model stacked as “plates’. In the parallel
algorithm, each plate would be assigned a processor.

Figure 5

Performance Benchmark

The generative model for the
following experiments was trained on
my particular guitar using the EM®
algorithm for 5 iterations. The audio
segmenis where down-sampled from
8,000 Hz by a factor of 20 and this was
accounted for in the model by adjusting
the angular frequencies of the oscillator
bank.

The results show the obvious
extreme performance increase when
going to parallel. The serial algorithm’s
execution time grows exponentially as
the size of model increases while the
parallel algorithms stay the same.
Suprisingly, there wasn’t as much
difference in the running times of the
two parallel algorithms in the

Polyphonic Transcription
Execution Time

= Serial
- —i—Parailel | (Cannon)
——Parallet ll

16

14

12

10

Execution Time

O N A O O

M=12 M=24 M=48
# of Notes in Model

Future Work

The next step is to modify the
parallel algorithm to syncronize less
often; I believe improvements in
performance could still be made.

I also plan to research OpenMPI
solutions which could be useful for
professional and home recording studios
running processor clusters. A vl

experiments I ran, however.

We show 3 separate runs using the serial
and both parallel algorithms on models
with 12, 24, and 48 notes. H =5 for all
models. The samples audio data
contained 400 samples.

® Expectation Maximization. See
(Ghahramani, 1996)

serial plug-in implementing polyphoﬁic
transcription in serial mode is already in
the works.

References
Sorted Alphabetically

[1]  Cemgil, A. T., Kappen, H. J., &
Barber, D. (2003). Generative model
based polyphonic music transcription. In
Proc. of IEEE WASPAA, New Paltz,
NY. IEEE Workshop on Applications of

*® Virtual Studio Technology. See
http://www.steinberg.net




Signal Processing to Audio and
Acoustics. h '

2]  Cemgil, A. T. Bayesian Music
Transcription. PhD thesis, Radboud
University of Nijmegen, 2004.

3] - Ghahramani, Z., & Hinton, G. E.
- (1996). Parameter estimation for linear
“dynamical systems. {crg-tr-96-2). Tech.
rep:, University of - Totronto. Dept, of
Computer Science.

[4]  Kedzierski, Mark (2005).
Bayesian Guitar Transcription.
Undergraduate research rep, University
of Texas at Austin, Deparment of
Computer Science.

[5].  Murphy, K. P. (2002). Dynamic
Bayesian Networks: Representation,
Inference and Learning. Ph.D. thesis,
University of California, =~ Berkeley.

[6] . Welch, G., & Bishop, G. (2001).
An Introduction to the Kalman Filier.
SIGGRAPH course §, University of
North Carolina at Chapel Hill. -



